

Ager	nda
0120 AM	Introduction
	Interpreting Data
0.40 AM	Chao Evenies, Data Internetation Test 1
9:10 AM	Class Exercise: Data Interpretation Test I
9:30 AM	Bayesian Statistics - How Might They Help?
9:50 AM	AIHA Exposure Assessment Model: Inherently Bayesian
10;15 AM	Traditional IH Statistics
10:30 AM	Morning Break
10:45 AM	Rules of Thumb
11:15 AM	Class Exercise: Data Interpretation Test 2
12:00 PM	Lunch
12:45 PM	Bayesian Decision Analysis (BDA) Theory and Tool
1:45 PM	Scenario Examples - Decision Chart Interpretation
2:10 PM	GSD and Parameter Space Verification
3:00 PM	Afternoon Break
3:15 PM	BDA Potential: Integrating Professional Judgment
3:45 PM	Other Potential Applications for BDA
4:00 PM	Closing Discussion
4:30 PM	End Class

8-hr TWA exposures	Sample Results for five o as acceptable or unacce	perations. ptable.	Rate the
- Xylene: TL\	/ = 100 ppm	Interpre Acce	etation ptable?
Scenario	Data (ppm)	Yes	No
1	21, 68		
2	21, 109, 38, 41, 48		
3	12, 16, 21, 24		
4	5		
5	8, 70, 5, 37, 12		

EA Sy	mposium Sur	vey Re	sults
Xylene: TLV	′ = 100 ppm	Interpret Accep	tation - otable?
Scenario	Data (ppm)	Yes	No
1	21, 68	17%	83%
2	21, 109, 38, 41, 48	12%	88%
3	12, 16, 21, 24	92%	8%
4	5	49%	51%
5	8, 70, 5, 37, 12	35%	65%
			6

Example	of filling out the D	IT
Categories	Dataset #1 - Probability of 95 th Percentile in Category	
<10%	30	
10-50%	45	
50-100%	15	
>100%	10	
		24

Data Interpretation	on Test (DIT)	#6						
			ī					
Enter Your Numb	er		l					
		1						
OEL for all D	ata Sets							
100			-			-	-	-
	Sample Data	Sample Data	Sample Data	Sample Data	Sample Data	Sample Data	Sample Data	Sample Data
	Set #1	Set #2	Set #3	Set #4	Set #5	Set #6	Set #7	Set #8
	30	6	33	5	78	3	31	14
	17		37	20		1	17	5
	7		9	3			18	6
	13		109	12			45	12
	63		8					4
	5		5					36
	ke vo	ur iudaments	on the above	Statistics Te	st Data in the	following col	imns	
						lono mig ook		
	Jata Sot til	Data Sot #2	Data Sot #3	Data Sot #4	Data Sot #5	Data Sot #6	Data Sot #7	Data Sot #8
	Dala Sel #	Dala Sel #2	Data Set #3	Dala Sel #4	Dala Sel #J	Data Set #0	Dala Sel #1	Data Set #0
1-10% OEL								
10-50% OEL								
50-100% OEL								
>100% OEL								
Check	100?	100?	100?	100?	100?	100?	100?	100?
Have you ever ta	ken this stati	stical test bef	ore?	Yes	No			
If yes, how many	times & whe	n?						
Instructions Please list any specific comments regarding this DIT								
Enter your name at the to	p							
Review each data set an Make sure that one set or	d document the pr	obabilities of where	the 95th%tile falls					
Do not enter values less	than 1 in any field (no zeros!)						
Check to see that each D	Data Set Column a	dds to 100%						

-		Example: Category	Exposure Rating Follow-up
		Exposure Control Category**	Recommended Control
		0 (<1% of OEL)	No action
		1 (<10% of OEL)	general HazCom
		2 (10-50% of OEL)	+ chemical specific HazCom
		3 (50-100% of OEL)	+ exposure surveillance, medical surveillance, work practices
		4 (>100% of OEL)	+ respirators & engineering controls, work practice controls
		5 (Multiples of OEL; e.g., based on respirator APFs)	+ immediate engineering controls or process shutdown, validate respirator selection
	**	- Decision statis	tic = 95 th percentile
			45

COSH	H Essenti	als			
Table 3 Definitions of exposition Solids Exposure predictor trand Definition	sure Table 5 Relating script Predicted dust-in-air	exposure prec	dictor bands to s (mg/m ³)	o control app	broach
ED01	Control approach	Exposure pred	licter band		
EPSI Gr		EPS1	EPS2	EPS3	EPS4
EPS2 Gr	am qu ogram 1	0.01-0.1	0.1-1	1-10	>10
Table 4 The four con assessment scheme	trol a 2	0.001-0.01	0.01-0.1	0.1-1	1-10
Control Type	3	<0.001	0.001-0.01	0.01-0.1	0.1-1
General	Predicted vapour-i	n-air concentratio	ons (ppm)		
Contract	Control approach	Exposure pred	lictor band		
2 Engineeri control	ng	EPL1	EPL2	EPL3	EPL4
	1	<5	5-50	50-500	>500
	2	<0.5	0.5-5	5-50	5-500
	3	<0.05	0.05-0.5	0.5-5	0.5-5
3 Containm	ent				

GENERAL CONTA COMPA	Table 5 AINMENT LEVELS U ANY (ADOPTED FRC	34 SED IN ONE PHARM M NAUMANN ET. A	IACEUTICAL L.)
Category for Performance-Based Exposure Control Limit	General Corresponding Numerical "Exposure Control Limit" 8 Hour TWA	General Corresponding Wipe Test Criteria	Containment Level
1	In the range of 1- 5 mg/M ³	In the range of 100 mg/100 cm ²	Good manufacturing practices
2	In the range of $0.1 - 1 \text{ mg/M}^3$	In the range of $1 \text{ mg}/100 \text{ cm}^2$	Good manufacturing practices (with more stringent controls)
3	In the range of $1 - 100 \text{ ug/M}^3$	In the range of 100 ug/100 cm ²	Essentially no open handling (closed systems should be used)
4	In the range of <1 ug/M ³	In the range of $10 \text{ ug}/100 \text{ cm}^2$	No open handling (closed systems must be used)
5	In the range of 0.1 ug/M ³	In the range of $1 \text{ ug}/100 \text{ cm}^2$	No manual operations, no human intervention (robotics / remote operations encouraged)

Parameters vs. Statistics					
Paran	neters	Stati	stics		
-calculated using the population -log transform ea	-calculated using all elements of the population -log transform each element		-calculated from a sample of n elements randomly selected -log transform each element		
Population Mean	μ _y	Sample Mean	ÿ		
Population Standard Deviation	σγ	Sample Standard Deviation	s _y		
The measurements are converted to natural logs: $y = ln($					

Parameters vs. Statistics				
Paran	neters	Stati	stics	
-calculated using all elements of the population		-calculated from a sample of elements randomly selected		
Population Geometric Mean	GM	Sample Geometric Mean	gm	
Population Geometric Standard Deviation	GSD	Sample Geometric Standard Deviation	gsd	
			89	

Г

Sample geometric mean (gm) &
geometric standard deviation (gsd)
$$let \ y = \ln(x)$$
$$gm = \exp\left(\frac{\sum y_i}{n}\right)$$
$$gsd = \exp\sqrt{\frac{\sum (y_i - \overline{y})^2}{n-1}}$$

Exar estir	Example: Welding fume data - estimate GM and GSD					
Case	x _i (mg/m ³)	y _i =ln(x _i)	(y _i -ȳ) ²			
1	0.84	-0.1744	0.055877			
2	0.98	-0.0202	0.006762			
3	0.42	-0.8675	0.864025			
4	1.16	0.1484	0.007463			
5	1.36	0.3075	0.060248			
6	2.66	0.9783	0.839600			
Sum =		0.3722	1.833976			
<u>y</u> =		0.0620				
gm =		1.06				
gsd =			1.83			

Example: Welding fume data -
estimate GM and GSD
$$gm = \exp\left(\frac{0.3722}{6}\right) = 1.06 \ mg/m^3$$
$$gsd = \exp\sqrt{\frac{1.833976}{6-1}} = 1.83$$

		$\gamma = 0.95$					
P	0.75	0.90	0.95	0.99	0.995		
3	3.804	6.158	7.655	10.552	13.857		
4	2.619	4.163	5.145	7.042	9.215		
5	2.149	3.407	4.202	5.741	7.501		
6-	1.895	3.000	3.707	5.062	6.612		
7	1.732	2.755	3.399	4.641	6.061		
8	1.617	2.582	3.188	4.353	5.686		
9	1.532	2.454	3.031	4.143	5.414		
10	1.465	2.355	2.911	3.981	5.203		

$$95\% UCL(\hat{X}_{0.95}) = \exp(\bar{y} + K_{\gamma,p,n} \cdot s_y)$$

= $\exp(\bar{y} + K_{0.95,0.95,6} \cdot s_y)$
= $\exp(0.0620 + 3.707 \cdot 0.6043)$
= $10.00 \ mg/m^3$

		$X_p = GM \times GSD^{Zp}$	
		Multiple of GM (median)	
	GSD	$X_p = 95^{th}$ percentile	
		Z _p = 1.645	
	1.5	1.95	
	2.0	3.13	
	2.5	4.51	
	3.0	6.09	
			114

_	Rules of Thumb					
	Variability	ROT Multiplier]			
	Low	2				
	Medium	4				
	High	6				
			-			
			116			

- 1. If n is small (i.e., <6) and one or more measurements > OEL, then decision = Category 4 (>OEL).
- 2. Estimate the median and use it as a surrogate of the sample GM:
 - Sort the data
 - If n is odd the median is the middle value.
 - If n is even the median is the average of two middle values.
- 3. Multiply the median by 2, 4, and 6
 - The results comprise an *approximate* low, middle, and high estimate of $X_{0.95}$.
 - Emphasis on 2 x Median if data have little spread
 - Emphasis on 6 x Median if data have large spread

117

EA Survey					
Xylene: Tl	Ru	es of	Thum	b	
Scenerio	Data (ppm)	Median	2X	4X	6X
1	21, 68	45	90	180	270
2	21, <mark>109</mark> , 38, 41, 48	41	82	164	246
3	12, 16, 21, 24	19	38	76	114
4	5	5	10	20	30
5	8, 70, 5, 37, 12	12	24	48	72
					118

_	Rule of Thum	b Wc	orks	she	eet	
Data						Likely Category
Set	Data	Median	2x	4x	6x	(1-4)
Α	30, 17, 7, 13 , 63, 5					
В	6					
С	33, 37, 9, 109, 8, 5					
D	5, 20, 3, 12					
E	78					
F	3, 1					
G	31, 17, 18, 45					
Н	14, 5, 6, 12, 4, 36					
						120

	Rule of Thumb Worksheet					
Data Set	Data	Median	2x	4x	6x	Likely Category (1-4)
Α	5, 7, 13, 17, 30, 63	15	30	60	90	
В	6	6	12	24	36	
С	5, 8, 9, 33, 37, 109	21	42	84	126	
D	3, 5, 12, 20	8.5	17	34	51	
E	78	78	156	312	468	
F	1, 3	2	4	8	12	
G	17, 18, 31, 45	24.5	49	98	147	
Н	4, 5, 6, 12, 14, 36	9	18	36	54	
						121

Г

Data Interpretation Test (DIT) #5								
Enter Your Num	ber							
OEL for all D	Data Sets							
100)							
	Sample Data	Sample Data	Sample Data	Sample Data	Sample Data	Sample Data	Sample Data	Sample Data
	Set #1	Set #2	Set #3	Set #4	Set #5	Set #6	Set #7	Set #8
	5	8	18	82	5	11	11	15
	2		43		1	118	28	9
	11		9		2	35	6	36
	10		24		1	26		19
	34					2		23
	13					60		54
	<u>Make yo</u>	ur judgments	on the above	Statistics Te	st Data in the	<u>e following co</u>	lumns	
	Data Set #1	Data Set #2	Data Set #3	Data Set #4	Data Set #5	Data Set #6	Data Set #7	Data Set #8
1-10% OEL								
10-50% OEL								
50-100% OEL								
>100% OEL								
Check	100?	100?	100?	100?	100?	100?	100?	100?
Have you ever t	aken this sta	tistical test b	efore?	Yes	No			
If yes, how many times & wh <mark>en?</mark>								
Instructions				Please list a	ny specific co	omments rega	arding this DI	<u>r</u>
Enter your name at the	inter your name at the top							
Make sure that one cat	and document the p egory has the high	est percentage	re the 95tri‰ule iai	IS				
Do not enter values les	s than 1 in any field	d (no zeros!)						

		The AIHA	"Exposure Band	ina" Model			
1	 AIHA Exposure Control Ratings for TWA OELs Which exposure control band is appropriate? 						
	Exposure Control Ratings *		Cutoff (%OEL)	Confidence level			
		0	X _{0.95} ≤ 1%				
		1	1%< X _{0.95} <u><</u> 10%	High			
		2	10%< X _{0.95} <u><</u> 50%	Medium			
		3	50%< X _{0.95} <u><</u> 100%				
		4	X _{0.95} > 100%	Low			
				126			

-		Example: Category	Exposure Control Follow-up			
		Exposure Control Category**	Recommended Control			
		0 (<1% of OEL)	No action			
		1 (<10% of OEL)	general HazCom			
		2 (10-50% of OEL)	+ chemical specific HazCom			
		3 (50-100% of OEL)	+ exposure surveillance, medical surveillance, work practices			
		4 (>100% of OEL)	+ respirators & engineering controls, work practice controls			
		5 (Multiples of OEL; e.g., based on respirator APFs)	+ immediate engineering controls or process shutdown, validate respirator selection			
	** - Decision statistic = 95 th percentile					
			127			

Facility	rmation Automobile fr	ame manufa	acturing plant					(Dataset24 - Welding
Department	: Department f	8						Fumes.xls)
Building	Main							-
Process	Luxury auto I	frame weld						
Task	complete all r	emaining we	elds					
Substance I	, Information							
Substances	welding furge	e (NOS)						
Substance		(COVI)						
OEL	5	mg/m^3	•					
Comments	Data represe collected duri collected from flux-cored an	ng a 8-hour ng a 8-hour n underneat c welding (Fi	shift (breaks e h the welder's CAW) using me	xcluded). Al welding helm dium steel w	l measureme et. Welding ire with a flu	process was process was	Ē	
Comments	Data represe collected duri collected fron flux-cored an Data Entry	nt TWA caic ng a 8-hour n underneat c welding (Fi	shift (breaks e h the welder's CAW) using me	xcluded). Al welding helm dium steel w	l measureme et. Welding ire with a flu	process was pride-based	Ī	
Comments	Data represe collected duri collected from flux-cored and Data Entry	nt TWA caic ng a 8-hour n underneat c welding (Fi CASE	shift (breaks e h the welder's CAW) using me	xcluded). Al welding helm edium steel w <lod< td=""><td>I measureme et. Welding ire with a flu DATE</td><td>process was process was proced</td><td></td><td></td></lod<>	I measureme et. Welding ire with a flu DATE	process was process was proced		
Comments	Data represe collected duri collected from flux-cored and Data Entry	CASE	shift (breaks e h the welder's CAW) using me CONC 1.63	Cluded). All welding helm welding helm weldium steel welding steel welding welding helm welding helm weldi	I measureme et. Welding ire with a flu DATE 1987	GROUP WelderA		
Comments	Data represe collected duri collected from flux-cored and Data Entry 1 2	nt I WA calo ng a 8-hour n underneat c welding (Fi CASE 1 2	shift (breaks e h the welder's CAW) using me CONC 1.63 4.28	 xcluded). Al welding helm dium steel w <lod< li=""> </lod<>	I measureme et. Welding ire with a flu DATE 1987 1987	GROUP GROUP WelderA WelderB WelderC		
Comments	Data represe collected duri collected from flux-cored and Data Entry 1 2 3 4	nt I WA calo ng a 8-hour nu nderneat c welding (Fi CASE 1 2 3 4	shift (breaks e h the welder's o CAW) using me CONC 1.63 4.28 2.04 2.32	xcluded). Al welding helm dium steel w	DATE 1987 1987 1987	GROUP GROUP WelderA WelderB WelderC WelderD		
Comments	Data represe collected duri collected froi flux-cored and Data Entry 1 1 2 3 4 5	CASE 1 2 3 4 5	shift (breaks e h the welder's CAW) using me CONC 1.63 4.28 2.04 2.32 2,02	xcluded). Al welding helm edium steel w <lod< td=""><td>I measureme et. Welding irre with a flu DATE 1987 1987 1987 1987</td><td>GROUP GROUP WelderA WelderB WelderC WelderD WelderE</td><td></td><td></td></lod<>	I measureme et. Welding irre with a flu DATE 1987 1987 1987 1987	GROUP GROUP WelderA WelderB WelderC WelderD WelderE		
Comments	Data represe collected duri collected fron flux-cored are Data Entry 1 2 3 4 5 6	CASE CASE CASE CASE CASE CASE CASE CASE	shift (breaks e h the welder's - CAW) using me CONC 1.63 4.28 2.04 2.32 2.02 6.04	xcluded). Al welding helm edium steel w	I measureme et. Welding ire with a flu DATE 1987 1987 1987 1987 1987	GROUP GROUP WelderA WelderA WelderD WelderD WelderE WelderF		
Comments	Data represe collected duri collected fron flux-cored and Data Entry 1 2 3 4 5 6 7	nc I wA Caic ng a 8-hour n underneat c welding (Fr CASE 1 2 3 4 5 6	shift (breaks e h the welder's CAW) using me 1.63 4.28 2.04 2.32 2.02 6.04	xcluded). Al welding helm dium steel w	I measureme et. Welding ire with a flu DATE 1987 1987 1987 1987 1987	GROUP WelderA WelderA WelderD WelderE WelderF		
Comments	Data represe collected duri collected fron flux-cored an Data Entry 1 1 2 3 4 5 6 7 8	nc I wA Caic ng a 8-hour n underneat c welding (Fi CASE 1 2 3 4 5 6	shift (breaks e h the welder's CAW) using me 1.63 4.28 2.04 2.32 2.02 6.04	xxluded). Al welding helm dium steel w	I measureme et. Welding ire with a flu DATE 1987 1987 1987 1987 1987	GROUP WelderA WelderA WelderC WelderE WelderF WelderF		
Comments	Data represe collected duri collected from flux-cored an Data Entry 1 1 2 3 4 4 5 6 6 7 7 8 8 9	nc I wA Calc ng a 8-hour n underneat c welding (Fi CASE 1 2 3 4 5 6	shift (breaks e h the welder's CAW) using me CONC 1.63 4.28 2.04 2.32 2.02 6.04	xcluded). Al welding helm dium steel w	I measureme et. Welding ire with a flu DATE 1987 1987 1987 1987 1987	GROUP GROUP WelderA WelderA WelderD WelderE WelderE		

OEL	= 5 mg/m^3			
Order S	 tatistics:			
N	= 6			
Min	= 0.42		(Dataset25	- Welding Fumes vls)
Max	= 2.66		(Datasetz)	viciality runes.vis)
Median	= 1.0700			
	·			
vecript Noon	- 1 2400			
nean co	= 1.2400			
си си	- 1.0600			
CSD	= 1.832			
Complia	nce Statistics	(lognormal):		
X0.95	= 2.8800			
95%LCL	= 1.8100			
95%UCL	= 10.1000			
ExcFrac	= 0.005			
95%LCL	= <0.001			
95%UCL	= 0.149			
Complia	nce Statistics	(non-parametri	 c):	

IH Data Analyst - Ite Version Beta 1.0 File Edit View Conversions Calculate Graphs Options Help Calculate All Calculate Stats GDF Graphs Decision Charts	Enter information and sampling data & Press "Calculate All"						
Data GOF Initial Rating Censored Data		Statistics GOF Graphs Decision Charts Censored Data					
Facility Information		Decision Charts					
Facility Brazil Glue Factory		Bars and Labels					
Department Mixing		C Solid bars with labels					
Building 1		C Colored bars					
Brocorer Bin Blue Banana Glue							
T I Constant the Changing of constant of wetaking		80.4 80.2					
Task Operator #1 Charging, QC sampling and watching							
Lets focus on the Likelihoo	<u>d</u> (ie. No p	rior knowledge).					
OEL 100 ppm V		Likelihood					
		≩ 1 					
Comments We collected these 3 samples random	A						
Data Entry							
CASE CONC <lod date<="" th=""><th></th><th>Exposure Rating</th></lod>		Exposure Rating					
2 26		Posterior					
3 18							
4		20.8 8 8					
5		50.6 50.4					
6		ğ ₀₂					
7							
9		Exposure Rating					
10	_						
Ulpine BLE	NUS						

Rule of Thumb (R.O.T.) v.s. BDA							
Data			2			R.O.T. Category	BDA Category
Set	Data	Median	ZX	4X	6X	(1-4)	(1-4)
Α	5, 7, 13, 17, 30, 63	15	30	60	90		
В	6	6	12	24	36		
С	5, 8, 9, 33, 37, 109	21	42	84	126		
D	3, 5, 12, 20	8.5	17	34	51		
E	78	78	156	312	468		
F	1, 3	2	4	8	12		
G	17, 18, 31, 45	24.5	49	98	147		
Н	4, 5, 6, 12, 14, 36	9	18	36	54		
							167

Change dimensions of the Parameter Space: GM _{min} , GM _{max} , GSD _{min} , and GSD _{max}							
Exposure Zone Cutoffs Universe Boundaries Integration Accuracy							
OEL = 1							
Default							
GM minimum = 0.0005 0.0005 × OEL							
GM maximum = 5 5 × OEL							
GSD minimum = 1.05 1.05							
GSD maximum = 4 4.0							
Post Changes Cancel Changes Defaults							
	187						

	AIHA Exp	osure Control	Ratings
E	xposure Control Ratings *	Cutoff (%OEL)	Confidence level
	0	X _{0.95} ≤ 1%	
	1	1%< X _{0.95} <u><</u> 10%	High
	2	10%< X _{0.95} <u><</u> 50%	Medium
	3	50%< X _{0.95} <u>≤</u> 100%	
	4	$X_{0.95} > 100\%$	Low
			228

Perform Qualitati Exposure Assess	ve nents		Storage Tank	
Task Description	Agont	Duration/	Initial Exposure	Rating
Charging 20 - 10 kg bags of TiOx into Reactor w/ local	Titamium	Fiequency	Rating	Centainty
exhaust	Dioxide	90 mins / shift	1 (<10%OEL)	1-High
Using pneumatic pump to charge 700 liters of			. (
cyclohexanone from drums into reactor	Cyclohexanone	90 mins / shift	2 (10-50%OEL)	3-Low
Collect a 200 ml QC samples (6) through handhole	Cyclohexanone	10 mins / shift	1 (<10%OEL)	1-High
Charging latex super mix from storage tank (watching level through open manhole)	Cyclohexanone	120 mins / shift	1 (<10%OEL)	3-Low
Package final product through filter system	Cyclohexanone	180 mins / shift	1 (<10%OEL)	3-Low
Change filter media, bleed and flush pumps	Cyclohexanone	120 mins / shift	4 (100-500%OEL)	1-High
Monitoring process at control panel	Cyclohexanone	120 mins / shift	1 (<10%OEL)	1-High
Calibration & repair of viscosity meters	Cyclohexanone	20 mins / shift	1 (<10%OEL)	2-Medium
Reactor equipment maintenance	Cyclohexanone	240 mins / week	1 (<10%OEL)	2-Medium
Viscosensor rebuild welding	Nickel	120 mins / week	2 (10-50%OEL)	1-High
Paint area & parts clean up	MEK	60 mins / week	2 (10-50%OEL)	1-High
				229

Noise	e Analysis
dBA	Dose (80, 5)
80.8	55.9
76.5	30.8
82.2	67.8
83.9	85.9
78.7	41.8
77.3	34.4

Improving Professional Judgment John Mulhausen Ph.D., CIH, CSP Perry Logan Ph.D., CIH

Brainstorming just a few opportunities		
AIHA	 Tools Development Proficiency Data Interpretation (PDI) Program Like PAT program International Affairs – Outreach to International practitioners and organizations AIHA Committees: Mechanisms to improve Judgment Accuracy in various technical niches 	
Local Sections	Training ProgramsFacilitate "Decision Criteria" Discussion	
ACGIH	 Promote expectation for accurate judgments and data interpretation as part of good science when using TLVs 	
AIH	 Lead role for coordinating efforts ABET Accreditation Requirements Specific ethics training Core Competency Rigor 	

Brainstorming just a few opportunities		
ABIH	• Ongoing judgment training requirements for CIH ethics	
ORC	 Promote practices and tools- Member companies do it! Training and Workshops Research Participation 	
NIOSH	 Re-write yellow book Research Tool development Put into practice with HHEs R2P → Promote Solutions Training - Review during ERC grant application process 	
OSHA	 Generic Exposure Assessment Standard Incorporate into revised PEL regulation or legislation Discussion point when reviewing company programs VPP requirement 	
Universities	 Incorporate into training programs - Academic SIG 	

